
Using Queuing Theory to Model Streaming
Applications

Rahav Dor, Joseph M. Lancaster, Mark A. Franklin, Jeremy Buhler, and Roger D. Chamberlain
Dept. of Computer Science and Engineering, Washington University in St. Louis

{rahav.dor, lancaster, jbf, jbuhler, roger}@wustl.edu

Abstract—Queuing theory provides a theoretical framework
for quantitative understanding of the performance of streaming
applications. There are questions, however, as to the suitability
of queuing models to real applications. Here, we investigate
the correspondence between a relatively simple queuing model
of an FPGA-accelerated BLAST implementation and empirical
measurements taken from executions of the actual application.

I. INTRODUCTION

Queuing theory has been used to model many systems, from
simple single-server queuing stations such as a bank teller to
complex distributed software systems such as web servers [1].
Here, we are interested in whether simple, straightforward
queuing models can be effective at describing the performance
of high performance streaming data applications executing on
architecturally diverse computers. This question is particularly
interesting given the fact that we know, a priori, that the queu-
ing models make several simplifying assumptions about the
operation of the modeled system that we know to be counter to
the actual application. If this modeling paradigm proves viable,
then the ease of constructing and solving models under this
paradigm should be palatable for system modeling in general,
as well as for design space exploration, understanding of a
system, and reasoning about its improvements or limitations.
We explore this question by constructing a Jacksonian queuing
network model of a streaming implementation of BLAST
deployed on a combination of CPUs and FPGAs [2], [3].
BLAST is a computationally intensive biosequence alignment
application and we compare performance predictions from
the model to empirical measurements from the executing
application.

The TimeTrial performance monitor [4], [5] is used to both
calibrate and validate the performance model. For calibration
we measure the input rate at the beginning of the pipeline, λin,
and we use the measured branching probabilities to calculate
the input rates to subsequent stages. Service rates are deter-
mined by a combination of first principles understanding of
how the system operates and measured values. We validate the
model by predicting server utilizations and queue occupancies
and comparing the predictions to empirical measurements on
two distinct input data sets.

II. BLAST APPLICATION

BLAST [6], [7] is a software tool widely used in bioin-
formatics to find areas of biologically meaningful similar-
ity between DNA or protein sequences. BLAST works by

comparing one or more query sequences to a database of
other sequences, using a weighted edit distance computation
to determine how similar the query is to each substring of
the database. Because this distance is expensive to compute,
BLAST uses a pipeline of heuristics to rapidly filter out
database regions with a large edit distance to the query.

This work focuses on modeling Mercury BLAST [2], [3], an
accelerated BLAST that combines general-purpose processors
and FPGAs. Mercury BLAST’s three-stage pipeline is illus-
trated in Figure 1. In the first FPGA stage, BLAST detects
seed matches, which are exact substring matches of length 11
between the query and the database. Mercury BLAST divides
this stage’s work into two parts: stage 1a, in which each
database word is checked against on-chip Bloom filters [8]
built from the query to eliminate most non-matching words,
and stage 1b, in which the locations of matching query and
database words, if any, are identified using an SRAM-based
hash table.

Seed matches are forwarded to the second FPGA stage,
ungapped extension. This stage checks whether each seed
match is part of a larger ungapped alignment, i.e. a region
in which the query and database differ by a small number
of character substitutions. Ungapped alignments passing this
stage are forwarded to the third stage, gapped extension, which
runs in software. Gapped extension determines whether each
seed match is part of an even larger region with small edit dis-
tance, this time permitting character substitutions, insertions,
and deletions. Regions that pass this final test represent strong
gapped alignments between query and database, which are
reported to the user.

III. QUEUING THEORY PERFORMANCE MODEL

Figure 2 shows a queuing network used to model Mercury
BLAST. The queuing network is Jacksonian [9], [10], meaning
that the individual queuing stations are Markovian (Poisson
arrival process with rate λ, exponentially distributed service
times with rate µ) and the queues are assumed to have infinite
capacity (an M/M/1 queuing model). It is worth pointing
out here that the actual application exhibits none of these
properties. Arrivals are not Poisson, service times are not
exponential, and the physical queues are finite in capacity.
Whether or not the M/M/1 model assumptions are crucial is
the relevant question addressed in this work.

The model is nominally composed of 5 queuing stations:
the PCI-X bus that interconnects the processor and the FPGA,



Seed

matching

Ungapped

extension

Gapped

extension

Ungapped

alignments
Seeds

Stage 1 Stage 2 Stage 3

DNA

sequences
Gapped

alignments

Figure 1. Mercury BLAST.

Figure 2. Queuing model of Mercury BLAST.

as well as BLAST stages 1a, 1b, 2, and 3. Our focus is
on application stages that are executed on the FPGA, so we
will concentrate our attention on the servers modeling BLAST
stages 1a, 1b, and 2.

Starting from the left, λin is the rate at which DNA
sequence bases are consumed. They are queued for delivery
across the PCI-X bus and then delivered to stage 1a. As a
result, λ1a = λin. The feedback from BLAST stage 2 is
sent over the PCI-X bus to stage 3 which is executed on
CPUs, therefore λ3 = λ2out. Stage 1a filters the stream of
incoming bases into hits that are passed to stage 1b (with
probability p1a1b) or dropped (with probability (1 − p1a1b)).
Stage 1b generates seeds that are passed to stage 2 (with
probability p1b2) or dropped (with probability (1 − p1b2)).
Stage 2 subsequently generates alignments that are either
passed to stage 3 via the PCI-X bus (with probability p23)
or dropped (with probability (1− p23)). The above relates the
set of λs by the following system of equations:

λ1a = λin

λ1b = p1a1bλ1a

λ2 = p1b2λ1b

λ2out = p23λ2

λ3 = λ2out.

Using classic results from queuing theory [11], the utiliza-
tion for each server i is

ρi = λi/µi,

the mean queue occupancy for queue i is

NQ,i = ρ2i /(1− ρi),

and the probability of n or more elements in station i is

Pi[N ≥ n] = ρni .

IV. MODEL CALIBRATION AND VALIDATION

We use the TimeTrial performance monitor [4], [5] to make
empirical measurements on the executing system. TimeTrial is

capable of measuring resource utilizations, data throughputs,
etc. for streaming applications deployed on a combination of
processors and FPGAs. It is engineered to make its mea-
surements with minimal impact on the performance of the
application being monitored.

To calibrate the queuing model we use TimeTrial to measure
the input arrival rate (λin) at the beginning of the pipeline,
operating values of stage 1b that are data dependent (average
number of lookups in SRAM per seed, and the SRAM
utilization), and the branching probabilities (p1a1b, p1b2, and
p23). To validate the model we compare the model predictions
to the empirically measured server utilizations of stages 1a, 1b,
and 2 (ρ1a, ρ1b, and ρ2) and queue occupancies of stages 1b
and 2 (NQ,1b and NQ,2).

Each of the above measurements is made for 2 distinct test
cases. The runs are as follows:

• Run 1: The first dataset is the human chromosome 1
(from build 19 of the human genome) divided into 7,964
65,400-base segments as the query. The database consists
of the 9th build of the mouse genome (2.7 GBases).

• Run 2: The second dataset consists of comparing all the
non-mammal vertebrate mRNA split into 8,608 65,400-
base segments as the query. The queries were searched
against all the mammal mRNA in the NCBI RefSeq
repository (791 Mbases) as the database.

Table I gives the model inputs, while Table II provides a
comparison between model predictions and empirical mea-
surements. Note that the units for the service rates vary as
one moves down the pipeline. Where needed, appropriate
unit conversions are incorporated into the model (e.g., DNA
bases are encoded as 4 bits per base, so one byte of data
transfered across the PCI-X bus delivers 2 bases to the input
of stage 1a). In addition, the service rate for stage 1b is a non-
linear function of whether or not the external memory port is
saturated.

Starting with the server utilization results, we observe that
there is a close match in virtually every case between the
model predictions and the empirical measurements. This vali-
dates model input rate, service rates, and branching probabili-



Table I
INPUT PARAMETERS TO QUEUING MODEL.

Parameter Value for Value for
Run 1 Run 2

λin 900 MB/s 720 MB/s
µPCI 1 GB/s 1 GB/s
µ1a 2.1 Gbases/s 2.1 Gbases/s
µ1b 130 Mseeds/s 50 Mseeds/s
µ2 133 Maligns/s 133 Maligns/s
p1a1b 0.018 0.035
p1b2 0.88 0.76
p23 0.0002 0.0004

Table II
MODEL PREDICTIONS VS. EMPIRICAL MEASUREMENTS.

Parameter Model Empirical Error
Prediction Measurement

Run 1
ρ1a 0.84 0.85 0.01
ρ1b 0.25 0.23 0.02
ρ2 0.21 0.21 0

NQ,1b 0.08 approx. 0 0.07
NQ,2 0.06 1.2 1.1

Run 2
ρ1a 0.68 0.68 0
ρ1b 0.999 0.93 0.07
ρ2 .29 .29 0

NQ,1b 7500 580 6900
NQ,2 0.12 1.7 1.6

ties. This is not surprising, since these directly determine stage
utilizations and are independent of the distributions employed.

Turning to the queue occupancies, for 3 of 4 cases we again
have a very close match between the model predictions and
the empirical measurements. The one significant discrepancy is
for the queue associated with stage 1b in run 2. Here, the high
server utilization indicates that this server is the performance
limiting bottleneck in the application. The physical queue
is of length 600 entries, so the empirical queue occupancy
cannot grow larger than that. The model predicts a much larger
queue occupancy. Both the model and the empirical results
are indicating that the queue will fill; however, the infinite
queue capacity in the model is not capped by the length of
the physical queue.

Having predicted both the server utilizations and the queue
occupancies implies that the assumptions present in the M/M/1
queuing models do not inordinately impact the quality of
the model for these two runs. These two runs were selected
because they represent two distinct execution circumstances.
Run 1 lightly taxes the system while run 2 heavily taxes at
least stage 1b.

V. CONCLUSIONS

We have illustrated the use of straightforward queuing
models to describe the performance of high performance
streaming data applications. In general, they do surprisingly
well at predicting the performance properties of the real
application. Where there are discrepancies, the model can
assist in understanding those discrepancies. For example, in the
actual system, there is backpressure being asserted upstream
of stage 1b due to the fact that the queue is full. While the

notion of backpressure doesn’t exist explicitly in the current
queuing model, we can estimate it by asking the model
for the probability that the queue occupancy is greater than
the actual capacity of the queue. For run 2 this gives us
P1b[N ≥ 600] = 0.92, a likely event. Additional details on this
proposed paradigm as well as its suitability for an M/M/1/K
queuing model can be found in [12].

Our intent is to seek additional evidence for our hypothesis
by empirically validating our modeling paradigm with more
runs of Mercury BLAST and other applications. Using the
suggested queuing models to describe applications that do not
necessarily exhibit the corresponding probability distribution
requires additional exploration and we intend to look into the
reasons that allow these models to work. Lastly we intend to
use this modeling paradigm to guide tuning of the Mercury
BLAST implementation, to propose design alternatives that
will increase its performance, or to examine the potential
performance benefits achievable by exploiting alternative ac-
celerators (e.g., graphics engines) for one or more of the
pipeline stages.

ACKNOWLEDGMENTS

This work was supported by NSF grants CNS-0931693,
CNS-0905368, and CNS-0751212 and NIH grant R42
HC003225 (the latter through BECS Technology, Inc.). R.D.
Chamberlain is a principal in BECS Technology.

REFERENCES

[1] G. Casale, M. Ningfang, and E. Smirni, “Versatile models of systems
using map queueing networks,” in IEEE Int’l Symp. on Parallel and
Distributed Processing, Apr. 2008.

[2] J. D. Buhler, J. M. Lancaster, A. C. Jacob, and R. D. Chamberlain,
“Mercury BLASTN: Faster DNA sequence comparison using a stream-
ing hardware architecture,” in Proc. of Reconfigurable Systems Summer
Institute, Jul. 2007.

[3] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang,
A. Jacob, and J. Lancaster, “Biosequence similarity search on the
Mercury system,” Journal of VLSI Signal Processing, vol. 49, no. 1,
pp. 101–121, Oct. 2007.

[4] R. D. Chamberlain and J. M. Lancaster, “Better languages for more
effective designing,” in Proc. of Int’l Conf. on Engineering of Reconfig-
urable Systems and Algorithms, Jul. 2010.

[5] J. M. Lancaster, J. D. Buhler, and R. D. Chamberlain, “Efficient runtime
performance monitoring of FPGA-based applications,” in Proc. of 22nd
IEEE Int’l System-on-Chip Conf., Sep. 2009, pp. 23–28.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, pp. 403–10, 1990.

[7] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, W. Miller, and
D. J. Lipman, “Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs,” Nucl. Acids Res., vol. 25, no. 17, pp.
3389–3402, Sep. 1997.

[8] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Comm. of the ACM, vol. 13, no. 7, pp. 422–426, May 1970.

[9] J. Jackson, “Network of waiting lines,” Management Science, vol. 5,
no. 4, pp. 518–521, 1957.

[10] ——, “Jobshop-like queueing systems,” Management Science, vol. 10,
no. 1, pp. 131–142, 1963.

[11] L. Kleinrock, Queueing Systems, Volume 1: Theory. John Wiley &
Sons, 1975.

[12] R. Dor, “Against all probabilities: A modeling paradigm for streaming
applications that goes against common notions,” Dept. of Computer
Science and Engineering, Washington University in St. Louis, Tech. Rep.
WUCSE-2010-30, 2010.


